

Abenaa Brewster, M.D., MHS

Disclosure of Commercial Interest

It is the policy of the Prevent Cancer Foundation and the Nurse Practitioners in Women's Health that the education presented at CE-certified activities will be unbiased and based on scientific evidence. To help participants make judgments about the presence of bias, the Prevent Cancer Foundation provides information that faculty have disclosed about financial relationships they have with commercial entities that produce or market products or services related to the content of this educational activity.

There will not be any off-label and/or investigational use of products discussed within the content at any of the presentations at this conference.

Alcohol and Risk of Cancer

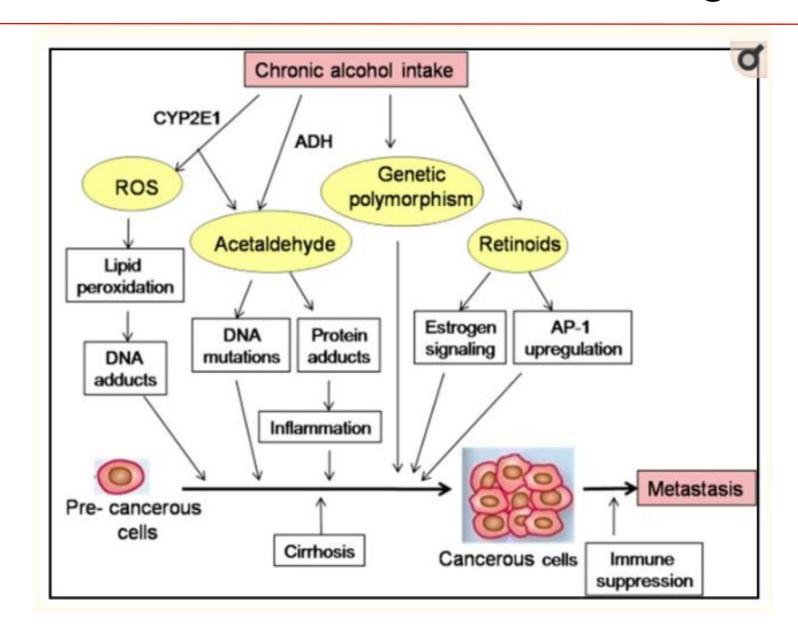
Dr. Abenaa Brewster has indicated she has no relevant financial relationships within the past 12 months.

Alcohol and Cancer

Abenaa Brewster MD
Professor, Department of Clinical Cancer
Prevention

Alcohol and Cancer – Presentation Outline

- Epidemiological evidence for association between alcohol use and cancer
- Rationale for American Society of Clinical Oncology (ASCO) position statement on alcohol and cancer
- Policy recommendations for alcohol control

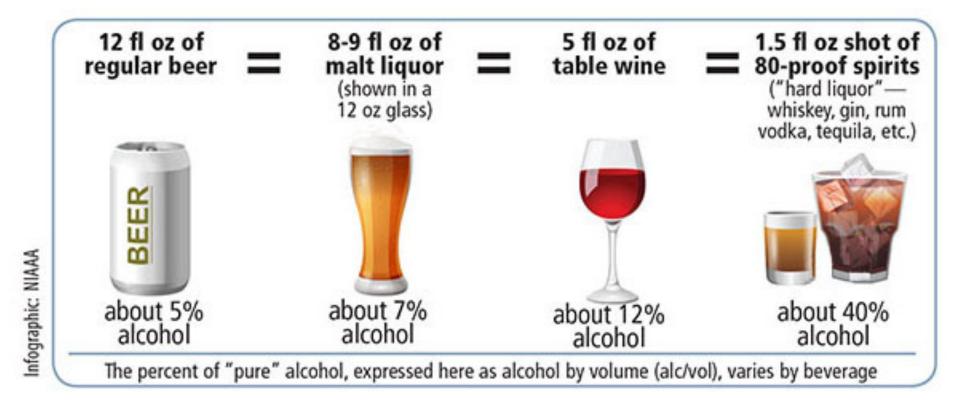


Public Health Impact of Alcohol Use

- 3.3 million deaths occur annually globally due to harmful use of alcohol (7.7 million deaths due to smoking)
- 5.5% of all newly diagnosed cancers globally are related to alcohol use (40% related to smoking)
- 3.5% of all cancer deaths in the US related to alcohol use (28% related to smoking)
- 12-14% of individuals who drink have alcohol dependence (most individuals who drink heavily do not have alcohol dependence or alcoholism)

Alcohol Metabolism and Role in Carcinogenesis

Epidemiological Evidence for Association Between Alcohol Use And Cancer


Type of Cancer	Nondrinker RR	Light Drinker RR (95% CI)	Moderate Drinker RR (95% RR)	Heavy Drinker RR (95% RR)
Oral cavity and pharynx	1.0	1.13 (1.0 to 1.26)	1.83 (1.62 to 2.07)	5.13 (4.31 to 6.10)
Esophageal Squamous Cell	1.0	1.26 (1.06 to 1.50)	2.23 (1.87 to 2.65)	4.95 (3.86 to 6.34)
Larynx	1.0	0.87 (0.68 to 1.11)	1.44 (1.25 to 1.66)	2.65 (2.19 to 3.19)
Liver	1.0	1.00 (0.85 to 1.18)	1.08 (0.97 to 1.20)	2.07 (1.866 to 2.58)
Female Breast	1.0	1.04 (1.01 to 1.07)	1.23 (1.19 to 1.28)	1.61 (1.33 to 1.94)
Colorectum	1.0	0.99 (0.95 to 1.04)	1.17 (1.11 to 1.24)	1.44 (1.25 to 1.65)

Alcohol Use and National Guidelines

The American Heart Association, American Cancer Society, US Department of Health and Human Services

• Limit alcohol consumption to no more than 2 drinks a day for men (14 per week) and no more than 1 drink a day for women (7 per week) – moderate drinking

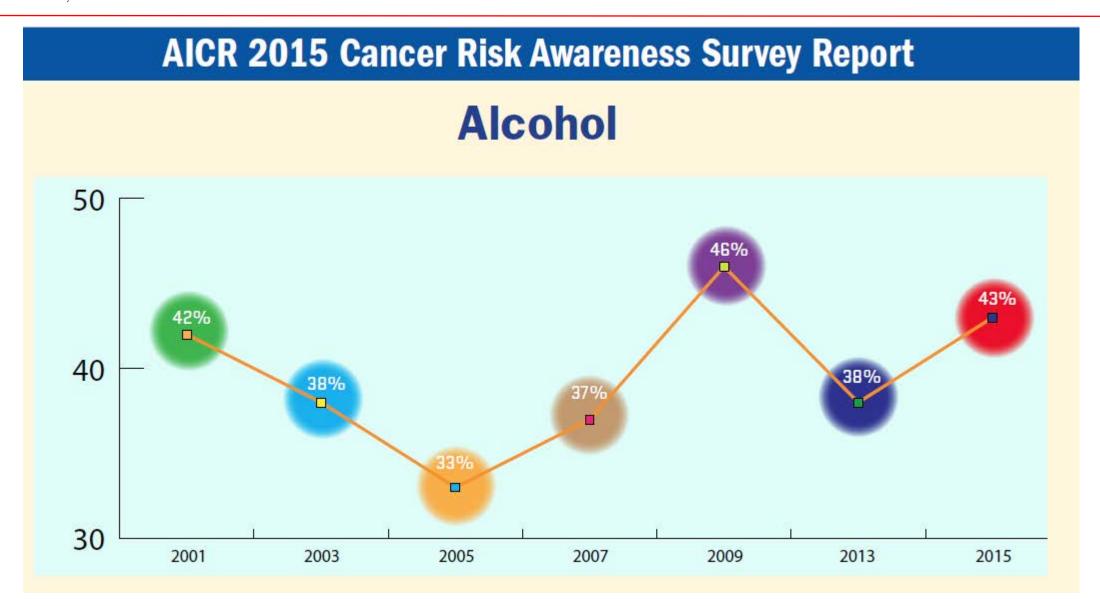
Definition of standard drink- 14 grams of pure alcohol

VOLUME 36 - NUMBER 1 - JANUARY 1, 2018

JOURNAL OF CLINICAL ONCOLOGY

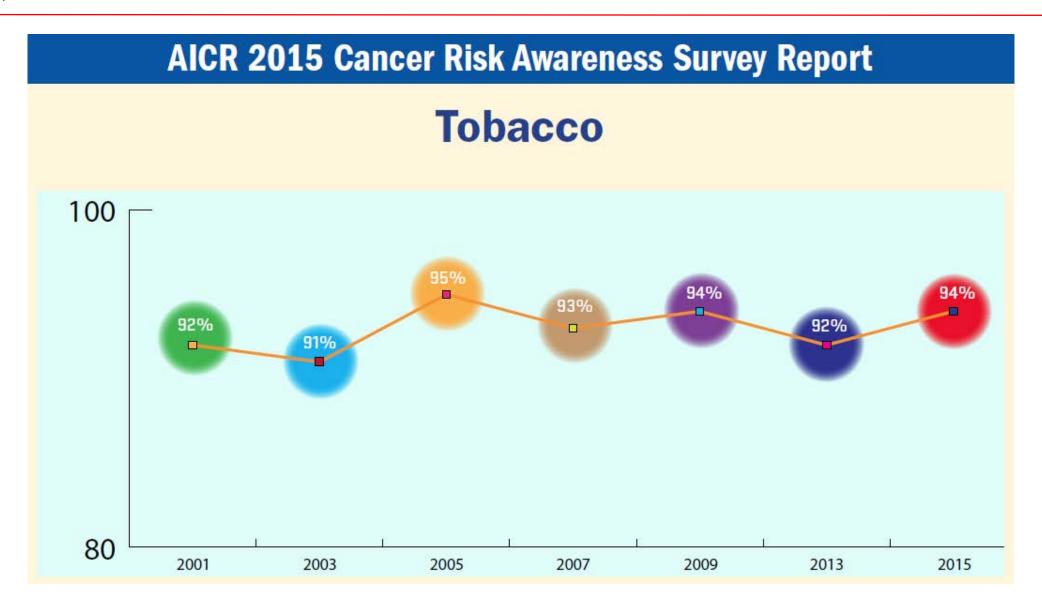
ASCO SPECIAL ARTICLE

Alcohol and Cancer: A Statement of the American Society of Clinical Oncology


Noelle K. LoConte, Abenaa M. Brewster, Judith S. Kaur, Janette K. Merrill, and Anthony J. Alberg

Rationale for (ASCO) Position Statement on Alcohol and Cancer

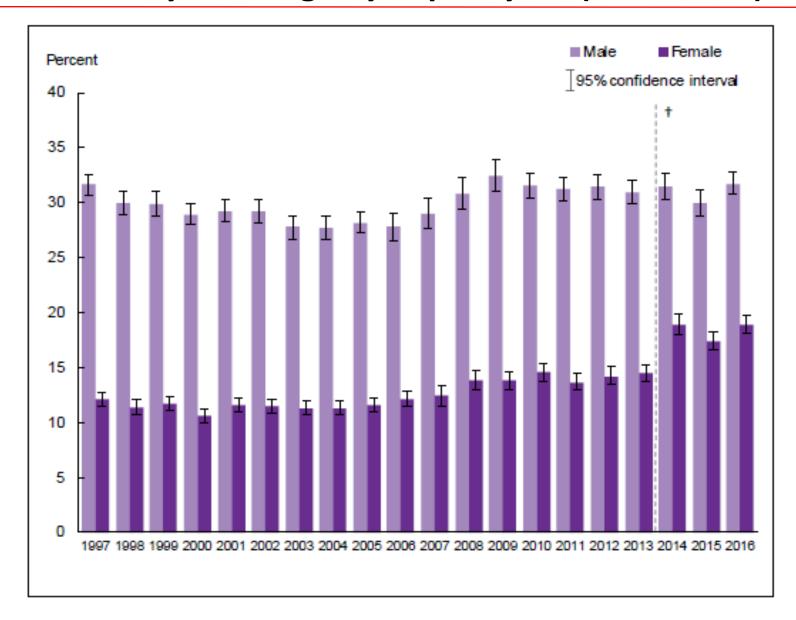
- Promote public education about the risks of alcohol and certain types of cancers
- Educate oncology providers on associations between alcohol use and cancer risk and treatment complications
- Identify areas of research needed on effect of alcohol use on cancer treatment and survivorship
- Support policy efforts for alcohol control



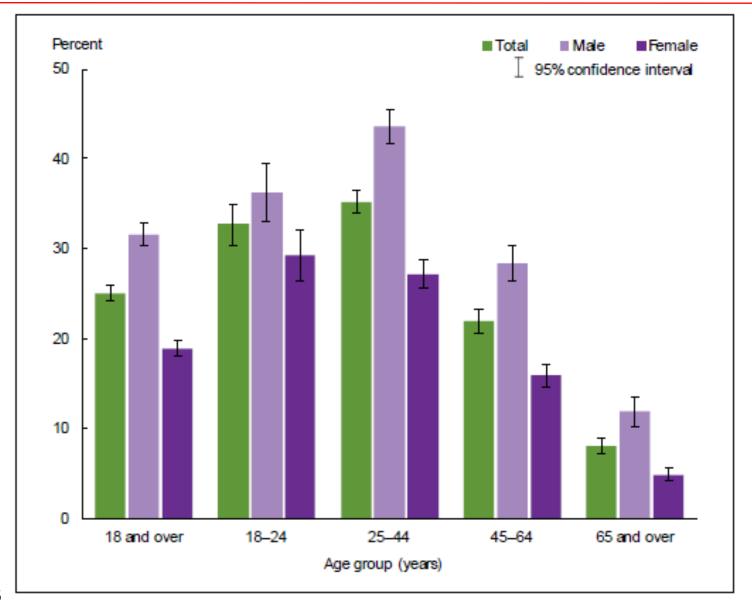
Trend in Awareness that Alcohol Increases Cancer Risk

Trend in Awareness that Tobacco Increases Cancer Risk

Alcohol and Cancer – Alcohol Use Behavior



- Alcohol serving size has increased over the past 25 years
- Wine strength has increased by 13% since 1990
- 13% of US population engages in binge drinking (which is defined as 3 or more drinks per day for women and 4 or more drinks per day among men)

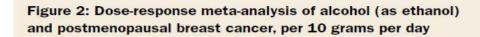


Percentage of adults aged 18 or older who had at least one heavy drinking day in past year (1997-2016)

Percentage of adults aged 18 or older who had at least one heavy drinking day in past year by age and sex

Alcohol Use and Premenopausal Breast Cancer Meta-Analysis of 10 Studies (n=4,227)

Figure 1: Dose-response meta-analysis of alcohol (as ethanol) and premenopausal breast cancer, per 10 grams per day


Author	Year	per 10 g/day Intake RR (95% CI)	% Welght
Fagherazzi	2015	1.00 (0.95, 1.06)	30.53
Couto	2013	- 1.06 (0.96, 1.19)	7.95
Chen	2011	- 1.06 (0.98, 1.15)	14.05
Suzuki	2010	1.05 (0.98, 1.14)	15.74
Trichopoulou	2010	0.96 (0.72, 1.28)	1.11
Zhang	2007	1.08 (0.96, 1.22)	6.27
Horn-Ross	2004	1.12 (0.95, 1.31)	3.54
Petri	2004	1.15 (1.01, 1.31)	5.31
Rohan	2000	- 1.06 (0.97, 1.15)	12.42
Garland	1999	— 1.09 (0.92, 1.29)	3.08
Overall (I-squared = 0.0%, p = 0.739)		1.05 (1.02, 1.08)	100.00
NOTE: Weights are from	random effects analysis		

5% increase in risk with one serving of alcohol per day

Making Cancer History®

Alcohol Use and Postmenopausal Breast Cancer Meta-Analysis of 22 Studies (n=35,221)

Author	Year	Per 10 g/day RR (95% CI)	% Welght
Fagherazzi	2015	1.03 (1.00, 1.05)	9.44
Brinton	2014	1.08 (1.06, 1.11)	9.54
Falk	2014 -	1.12 (1.03, 1.22)	4.93
Park	2014	1.04 (1.02, 1.06)	9.74
Couto	2013	1.10 (0.96, 1.28)	2.49
Hartz	2013	1.39 (1.18, 1.62)	2.11
Sczaniecka	2012	1.48 (1.28, 1.70)	2.51
Chen	2011	1.12 (1.09, 1.15)	9.16
Suzuki	2010	1.01 (0.87, 1.18)	2.25
Trichopoulou	2010	1.02 (0.74, 1.37)	0.66
Ericson	2009	1.13 (0.98, 1.30)	2.52
Nielson	2008	1.09 (0.99, 1.20)	4.19
Zhang	2007	1.07 (0.99, 1.15)	5.52
Mellemkjaer	2006	1.08 (1.03, 1.13)	7.80
Suzuki	2005	1.24 (1.08, 1.42)	2.64
Horn-Ross	2004	1.08 (0.99, 1.17)	5.10
Petri	2004 —	1.05 (0.96, 1.16)	4.36
Sellers	2004	1.19 (0.96, 1.48)	1.28
Feigelson	2003 —	1.13 (1.03, 1.24)	4.24
Rohan	2000 -	1.05 (0.98, 1.11)	6.44
van den Brandt	1995	1.09 (0.95, 1.25)	2.73
Barrett-Connor	1993	0.85 (0.56, 1.31)	0.35
Overall (I-squared = 70	.7%, p = 0.000)	1.09 (1.07, 1.12)	100.00
NOTE: Weights are from i	random effects analysis		

10% increase in risk with one serving of alcohol per day

Alcohol Use and Colorectum Cancer UK Biobank (n=175,402)

Making Cancer History®

Food group/ Meanutrient		Participants	Cases	HR (95% CI)	
Fruit				I	
< 2/day	107	154 678	854	+ 1.00 (1.00, 1.00)	i
2.0-2.9/day	181	118 743	631	— ■ 0.96 (0.87, 1.07)	ı
3.0-3.9/day	231	90 574	491	— ■ 0.98 (0.87, 1.10)	i
≥ 4/day	310	103 966	581	─➡ 0.99 (0.89, 1.10)	ı
100 g per day		467 961	2557	1.00 (0.94, 1.05)	,
				Ptrend=0.855	
Vegetables					
< 2/day	162	161 306	866	+ 1.00 (1.00, 1.00)	i
2.0-2.9/day	216	157 007	858	0.98 (0.89, 1.08)	1
3.0-3.9/day	250	82 657	466	1.01 (0.90, 1.13)	1
≥ 4/day	292	64 201	356	1.02 (0.90, 1.16)	
100 g per day		465 171	2546	1.01 (0.93, 1.11)	
				Ptrend=0.750	
Fibre					
Lowest fifth	12.9	91 213	487	1.00 (1.00, 1.00)	ı
2	14.9	90 766	501	0.99 (0.88, 1.13)	
3	16.2	90 396	489	0.96 (0.84, 1.09)	
4	17.4	90 481	481	0.93 (0.81, 1.06)	
Highest fifth	19.6	90 288	499	0.94 (0.83, 1.07)	
5 g per day		453 144	1970	0.94 (0.86, 1.03)	
			1010	Ptrend=0.221	
Alcohol					
< 1 g/day	2	92 768	444	1.00 (1.00, 1.00)	
1-7 g/day	7	119 993	559	1.02 (0.90, 1.16)	1
8-15 g/day	15	104 849	531	1.06 (0.93, 1.20)	ı
≥ 16 g/day	32	156 528	1065	1.24 (1.10, 1.40)	
10 g per day		474 138	2599	\$\times 1.08 (1.04, 1.12)	
Tea < 2 cups/day	147	124 710	658	1.00 (1.00, 1.00)	
2-3 cups/day	460	139 179	813	1.03 (0.93, 1.14)	
4-5 cups/day	679	120 345	638	0.92 (0.83, 1.03)	
≥ 6 cups/day	880	89 260	485	0.92 (0.85, 1.03)	
200 mL per day	550	473 494	2594	0.98 (0.95, 1.01)	
po. day		47.5 494	2334	Ptrend=0.165	
Coffee					
None	48	105 274	564	1.00 (1.00, 1.00)	
0.5-1 cups/day	188	128 851	694	0.91 (0.81, 1.01)	
2 cups/day	348	88 681	509	0.93 (0.83, 1.05)	
≥ 3 cups/day	584	150 598	827	0.90 (0.81, 1.00)	
200 mL per day	per day	473 404	2594	0.90 (0.81, 1.00)	
per day	po. day	473 404	2354	Ptrend=0.146	
				0.5	
miology				Hazard ratios and 95% CI	

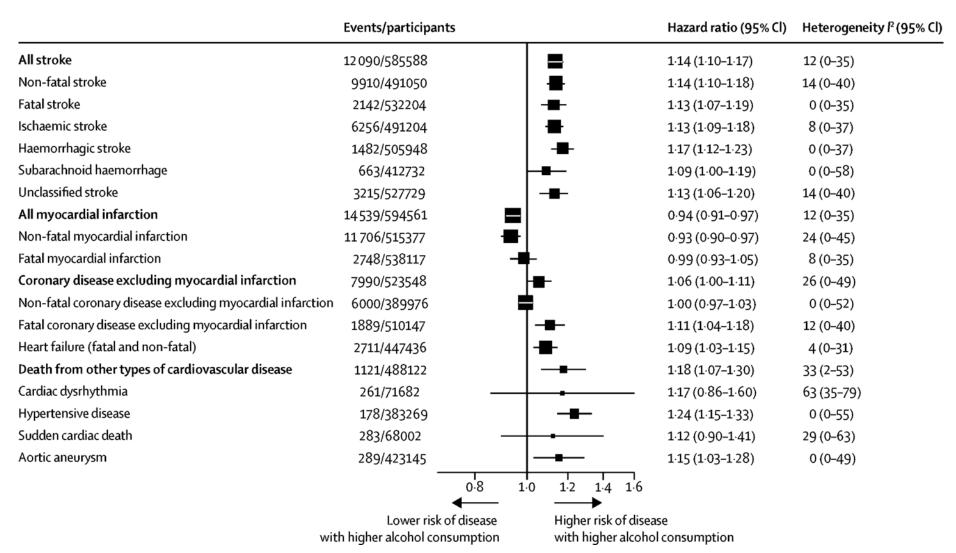
Alcohol and National Guidelines

American Institute for Cancer Research (AICR), International Agency for Research on Cancer (IARC) state that no level of alcohol is completely safe

Media Attention - Alcohol Use and Health Outcomes

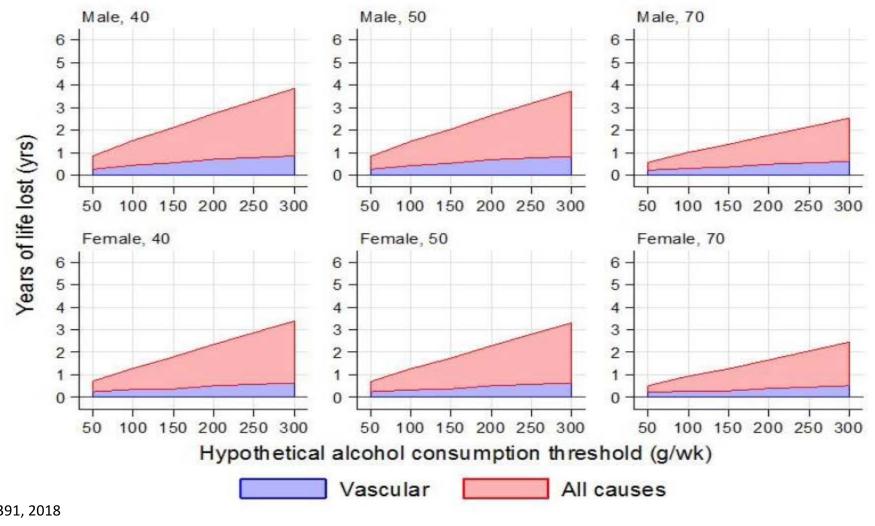
Alcohol and Cancer – Other Myths

- Drinking decreases the risk of cardiovascular disease
 - A drink a day does not keep the cardiologist away
- Light drinking can stimulate appetite and beneficial for cancer patients
 - Randomized study showed no improvement in appetite or weight in cancer patients assigned to white wine vs nutritional supplement
- Drinking is safer than smoking
 - One bottle of wine per week is equivalent to 5 cigarettes per week (men) and 10 cigarettes per week (women) for similar increase in absolute cancer risk


Alcohol and Link with Cardiovascular Disease

Individual level data from 83 prospective studies (1964-2010)

- 786,787 participants (19% non-drinkers)
- Mean age 57 years, 44% participants were women and 21% were current smokers
- 50% reported drinking > 100 grams of alcohol per week (~10 drinks per week)
- 8.4% reported drinking > 350 grams of alcohol per week
- 39, 018 incident cardiovascular events



Alcohol and Link with Cardiovascular Disease Alcohol Use (100 grams per week ~ 10 drinks per week)

Years of Life Lost for Individuals Drinking Above a Range of Alcohol Consumption Thresholds

Enter Alcohol and Cardiovascular Disease - Conclusions

- Lowest threshold for all-cause mortality is 100 grams per week (less than 196 grams [2 drinks per day] upper limit recommended in US guidelines)
- No clear thresholds for risk of CV events (other than MI)
- Data support adoptions of lower limits of alcohol consumption

Alcohol Use and US Policy Recommendations

- Advocate for legislation aimed and minimizing alcohol promotion, advertising and other marketing strategies by the alcohol industry aimed at adolescents
- Ban on marketing for products such as alcopops, gelatin-based alcohol products, that have special appeal to youths under the age of 21.
- Regulate alcohol outlet density for consumption on premises (e.g., bars or restaurants) or off premises (e.g. liquor stores or other retail settings)
- Increase alcohol taxes and prices
- Include alcohol control strategies in comprehensive cancer control plans

Alcohol Use and Cancer - Conclusions

- Alcohol significantly contributes to cancer incidence and outcomes and overall mortality
- Concrete casual association with at least 7 cancers (aerodigestive, liver, breast and colon and strong evidence of dose-response for alcohol and breast cancer (light alcohol use)
- Increased knowledge of alcohol use as a cancer risk factor may lead to change in drinking behavior and increase in provider counseling of patients about alcohol use
- Research is needed on mechanistic effects of alcohol and interventions to assist patients in reductions of abstention from alcohol use