BRIGHAM HEALTH BRIGHAM AND WOMEN'S HOSPITAL

Imaging Advances in Smoking-related Injury: From COPD to Interstitial Lung Disease Raúl San José Estépar, PhD

Applied Chest Imaging Laboratory Brigham and Women's Hospital

Quantitative Imaging Workshop, XV

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

A FOUNDING MEMBER OF PARTNERS

Smoking Related Lung Disease

Designing Imaging Phenotypes: Computational Imaging

What are the *imaging endophenotypes* that are linked to the clinical manifestation and the prognostication of smoking related injury and *poor lung development*?

Emphysema Subtyping via Local Histogram

P. J. Castaldi, R. San José Estépar, et al, Am. J. Respir. Crit. Care Med. 2013 188(9): 1083–1090

Local Histogram Subtypes have novel GWAS

LHE Pattern	Lead SNP	Nearest Gene	Locus	Position (BP)	Effect Allele	P Value Meta
Normal	rs17486278	CHRNA5	15025	78867482	A	8.3×10^{-13}
	rs138641402	HHIP	4031	145445779	A	1.7×10^{-9}
	rs1690789	TGFB2	1q41	218698027	C	2.9×10^{-8}
	rs17368659	MMP12	11q22	102742761	G	1.1×10^{-8}
Moderate centrilobular	rs114205691	CHRNAS	15a25	78901113	C	3.1×10^{-13}
	rs56113850	CYP2A6	19g13	41353107	Т	1.3×10^{-9}
	rs17368582	MMP12	11022	102738075	G	2.7×10^{-9}
	rs1690789	TGFB2	1q41	218698027	C	7.9×10^{-9}
Severe	rs9788721	AGPHD1	15g25	78802869	т	1.8×10^{-13}
centrilobular	rs379123	MYO1D	17q11	30891814	Т	1.5×10^{-8}
Panlobular	rs11852372	AGPHD1	15q25	78801394	A	1.5×10^{-10}
	rs9590614	VWA8	13q14	42175588	G	1.1×10^{-8}
		the second s				

• Novel associations within genes associated with cell migration (*MYO1D*) and cell signaling (*VWA8*).

• GWAS observed at previously established COPD-associated loci

> 14q31 (nearby gene HHIP), 15q25(CHRNA3/5/IREB2), 11q22 (MMP12), and 19q13 (CYP2D6).

Castaldi et al, AJRCCM, 2013

Emphysema Subtypes and Lung Cancer

Kinsey CM, ATS; 2016

Lung Cancer Risk by Emphysema Subtype

Lung Parenchymal Feature	OR	CI	P value
%LAA -950 (density threshold alone)	1.01	[0.99, 1.02]	0.146
Mild centrilobular (CL1)	0.26	[0.17, 1.61]	0.263
Moderate centrilobular (CL2)	2.41	[1.09, 5.32]	0.029
Severe centrilobular (CL3)	6.12	[0.97, 38.6]	0.054
Panlobular (PL)	4.99	[0.23, 108.8]	0.306
Pleural-based (PB)	13.4	[0.00, 1137]	0.713

Each model includes one of the above lung parenchymal features and is adjusted for age, gender, pack years, and airflow obstruction

With the exception of %LAA-950, all morphologies were measured by the LH method at the level of the secondary pulmonary lobule.

1

Kinsey CM, ATS; 2016

Interstitial Lung Abnormalities

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MARCH 10, 2011

VOL. 364 NO. 10

Lung Volumes and Emphysema in Smokers with Interstitial Lung Abnormalities

George R. Washko, M.D., M.M.Sc., Gary M. Hunninghake, M.D., M.P.H., Isis E. Fernandez, M.D., Mizuki Nishino, M.D., Yuka Okajima, M.D., Tsuneo Yamashiro, M.D., James C. Ross, M.S., Raúl San José Estépar, Ph.D., David A. Lynch, M.D., John M. Brehm, M.D., M.P.H., Katherine P. Andriole, Ph.D., Alejandro A. Diaz, M.D., Ramin Khorasani, Ph.D., Katherine D'Aco, M.S., Frank C. Sciurba, M.D., Edwin K. Silverman, M.D., Ph.D., Hiroto Hatabu, M.D., Ph.D., and Ivan O. Rosas, M.D., for the COPDGene Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

MUC5B Promoter Polymorphism and Interstitial Lung Abnormalities

Gary M. Hunninghake, M.D., M.P.H., Hiroto Hatabu, M.D., Ph.D., Yuka Okajima, M.D., Wei Gao, M.S., Josée Dupuis, Ph.D., Jeanne C. Latourelle, D.Sc., Mizuki Nishino, M.D., Tetsuro Araki, M.D., Oscar E. Zazueta, M.D., Sila Kurugol, Ph.D., James C. Ross, M.S., Raúl San José Estépar, Ph.D., Elissa Murphy, M.S., Mark P. Steele, M.D., James E. Loyd, M.D., Marvin I. Schwarz, M.D., Tasha E. Fingerlin, Ph.D., Ivan O. Rosas, M.D., George R. Washko, M.D., George T. O'Connor, M.D., and David A. Schwartz, M.D.

Local Histogram with Interstitial Patterns

Ash SY, Harmouche R, Academic Radiology 2017;24

Detection of ILA matches visual diagnosis

AUC 0.82 for the detection of visually defined interstitial lung abnormalities

AUC 0.89 for the detection of visually defined fibrotic parenchymal abnormalities

Ash SY, Harmouche R, Academic Radiology 2017;24

Susceptibility without visual ILA

All	Change per 5% Increase			
Participants	in Interstitial Features	CI	р	
FEV1%	-2.65	-3·15, -2·14	<0.001	
FVC%	-2·47	-2.88, -2.06	<0.001	All Participants
FEV1/FVC	-0.004	-0.007, -0.001	0.005	
SGRQ	1.36	0·92, 1·81	<0.001	
No ILA (0 only)				
FEV1%	-4.83	-5·78, -3·89	<0.001	Without Visual
FVC%	-4.09	-4·85, -3·32	<0.001	ILA
FEV1/FVC	-0.010	-0.016, -0.005	<0.001	
SGRQ	0.806	-0·027, 1·639	0.058	

Ash, Chest 2017

Mortality and Interstitial Features

	Hazard Ratio* (5% Absolute increase of ILA Features)	CI	р
All participants	1.29	1.21, 1.38	<0.001
Subgroup A – Those without ILA	1.27	1.16, 1.39	<0.001
Subgroup B – Those without ILA and without indeterminate findings	1.20	1.02, 1.42	0.031
Subgroup C – Those with normal spirometry	1.25	1.07, 1.46	0.004
Subgroup D – Those without chronic dyspnea or bronchitis	1.26	1.11, 1.44	0.001

Ash, Chest 2017

Parenchymal Subtyping Predicts Mortality

Ash, Radiology 2018

The AI Revolution: A new paradigm?

Direct Regression of Outcomes

ILA subtyping with Deep Learning

Ensemble of Convolutional Neural Networks

BCNN ^{2D}	MSTAGE-CNN ^{2D}	MCONTEXT-CNN ^{2D}	BCNN ^{2.5D}	MSTAGE-CNN ^{2.5D}	BCNN ^{3D}	MSTAGE-CNN ^{3D}
Input: 48x48	<i>Input</i> : 48x48	<i>Input</i> : 48x48	Input: 3x48x48	<i>Input</i> : 3x48x48	<i>Input</i> : 48x48x7	Input: 48x48x7
Conv: 48@3x3	Conv:48@3x3	Conv: 48@3x3	Conv: 48@3x3	Conv:48@3x3	Conv: 48@3x3x2	Conv:48@3x3x2
Conv: 48@3x3	Conv: 48@3x3	Conv: 48@3x3	Conv: 48@3x3	Conv: 48@3x3	Conv: 48@3x3x2	Conv: 48@3x3x2
MaxPool:2x2	MaxPool:2x2	MaxPool:2x2	MaxPool:2x2	MaxPool:2x2	MaxPool:2x2x1	MaxPool:2x2x1
BatchNorm /	BatchNorm	BatchNorm	BatchNorm	BatchNorm	BatchNorm	BatchNorm
Conv:48@3x3	Conv:48@3x3	Conv:48@3x3	Conv:48@3x3	Conv:48@3x3	Conv:48@3x3x2	Conv:48@3x3x2
Conv:48@3x3	Conv:48@3x3	Conv:48@3x3	Conv:48@3x3	Conv:48@3x3	Conv:48@3x3x2	Conv:48@3x3x2
MaxPool:2x2	MaxPool:2x2	MaxPool:2x2	MaxPool:2x2	MaxPool:2x2	MaxPool:2x2x1	MaxPool:2x2x1
BatchNorm	BatchNorm	BatchNorm	BatchNorm	BatchNorm	BatchNorm	BatchNorm
FC: 64	FC: 64	FC: 64	FC: 64	FC: 64	FC: 128	FC: 64
1	/-MaxPool: 6x6	/ Input: 64x64	/	AMaxPool: 6x6	/	MaxPool: 6x6x1
/ /	BatchNorm ;	Conv: 48@3x3	/	BatchNorm /	/	BatchNorm
1	FC: 64	Conv: 48@3x3	Ť	FC: 64		FC: 64
i	, i	MaxPool:2x2	i	.'	į	1
1		BatchNorm	i j		17	
l j	l. I	Conv:48@3x3	1		1	
11	i	Conv:48@3x3			$\frac{1}{1}$	
\1 \1	A A	MaxPool:2x2	1 1		$\frac{1}{\lambda^1}$	
1	Ϋ́,	BatchNorm	1		1	
N N	Ϋ́,	FC: 64	Ň,	$\langle \rangle$	Ì	
	Concat: 128	Concat: 128	N N	Concat: 128	\ \	Concat: 128
FC: 112	FC: 112	FC: 112	FC: 112	FC: 112	FC: 112	FC: 112
Softmax: 8	Softmax: 8	Softmax: 8	Softmax: 8	Softmax: 8	Softmax: 8	Softmax: 8

Bermejo, Scientific Reports, 2018, under review

Ensemble stabilize performance

- Training in 37,424 locations
- Testing in 36,336 locations

Comparison with other architectures

Reconstruction Stability

Direct Biomarker Regression

González G et al, SPIE 2018

Emphysema Scoring From X-Ray

Iturrioz, ISBI 2018

Emphysema Scoring From X-Ray

Iturrioz, ISBI 2018

Artificial Intelligence and Integral Diagnosis

Deep Learning Performance for COPD Assessment

	СОР	Replication		
	Reconstru	ECLIPSE		
	STD (n=1,000)	SHARP (n=1,000)	(n=1 <i>,</i> 547)	
FEV1	0.735	0.735	0.64	
(r coef.)	[0.705 - 0.762] [0.705 - 0.762]		[0.542 - 0.756]	
GOLD Stage	E1 20/ / 74 70/ E2 00/ / 7		20,4% / 74,6%	
(Accuracy)	51.2%/74.7%	52.0% / 75.8%	29.4% / 74.0%	
ARD	0.633	0.627	0.55	
AUC	[0.602 - 0.663]	[0.597 – 0.658]	[0.51 - 0.62]	
Mortality ALIC	0 72	0 709	0.6	
	[0.6 - 0.78]	[0.58 - 0.737]	[0 52 - 0 71]	
	[0.0 0.70]	[0.50 0.757]	[0.32 0.71]	

González Serrano G, Am J Respir Crit Care Med, 2017

Conclusions

• Parenchymal Injury is a crucial marker of the host inflammatory response to tobacco injury.

 Quantitative assessment of parenchymal injury (emphysema and ILD) is clinically relevant even in asymptomatic.

- Artificial Intelligence may offer a new paradigm for image-based biomarker computation
 - Quality and through testing are a key factor for translation

Acknowledgements

Applied Chest Imaging Laboratory

- Carrie Aaron
- Samuel Ash
- Carolyn Come
- Alejandro Diaz
- Ruben San Jose
- Rola Harmouche
 German Gonzalez Serrano
- Stefanie Mason
 George Washko
- Pietro Nardelli

- Yuka Okajima
 - Jorge Onieva
- Nick Rahagi
- James Ross
- Gonzalo Vegas Sanchez-Ferrero

- NHLBI
 - R01HL116931
 - R01HL116473
 - COPDGene Study
- COPDGene Investigators

BRIGHAM HEALTH BRIGHAM AND WOMEN'S HOSPITAL

Thank you

rsanjose@bwh.harvard.edu

