### Establishing an International Monitoring Framework to Ensure Quality of Quantitative Images

Ricardo S. Avila rick.avila@accumetra.com

April 12, 2018

## **Lung Cancer**

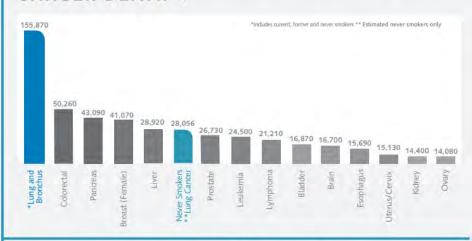
**EVERY DAY** 

427

AMERICANS DIE OF LUNG CANCER.

Lung cancer is the leading cancer killer in men & women in EVERY ETHNIC GROUP.

#### VETERANS


have at least a 25% higher incidence rate of lung cancer than civilians.

Lung cancer makes up 26% of all CANCER DEATHS.

#### **2017 LUNG CANCER FACTS**



### LUNG CANCER IS THE LEADING CAUSE OF CANCER DEATH (1)



#### SNAPSHOT OF PEOPLE WITH LUNG CANCER (ii)

20.9% CURRENT SMOKERS

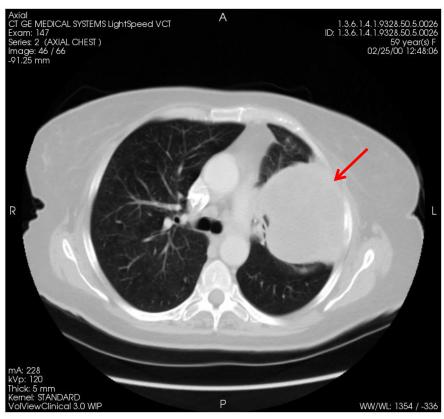
60% FORMER SMOKERS 17.9% NEVER SMOKED

(i) National Cancer Institute, Surveillance, Epidemiology, and End Results (SEER), U.S. Cancer Mortality, 1975-2013, published April 15, 2016. (ii) Centers for Disease Control and Prevention, Morbidity and Mortality Weekly Report, "Clgarette Smoking Among Adults -United States, 2006," November 9, 2007/56/46/1: 1757-1161, Table 2

http://lungcanceralliance.org

### Low Dose CT Lung Cancer Screening

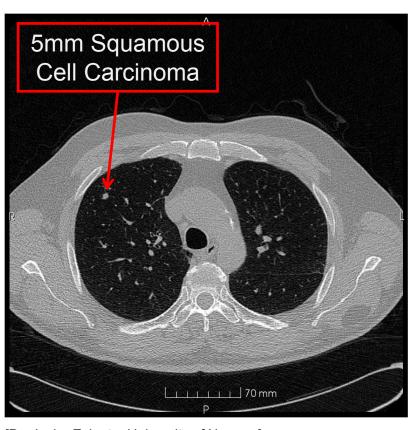
## Since 2015: Annual Low Dose CT Screening is Reimbursed For Those at High Risk








## **Lung Cancer Screening Benefit**


#### **Late-Stage Lung Cancer**



[R. Gottlieb, Roswell Park Cancer Institute]

~5% five year survival

### **Early Lung Cancer**



[Dr. Javier Zulueta, University of Navarra]

~85% five year survival

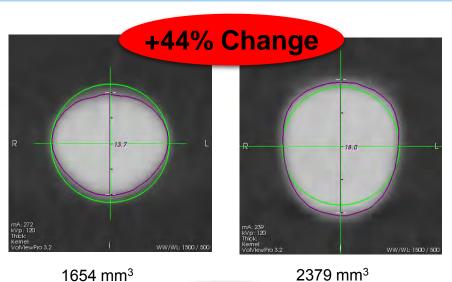
### **Pulmonary Nodules**

Time 1

Time 2

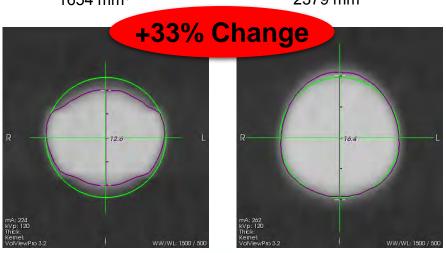


 $= 668 \text{ mm}^3$ 


 $T2 = 661 \text{ mm}^3$ 

 $\Delta V = No Change$ 

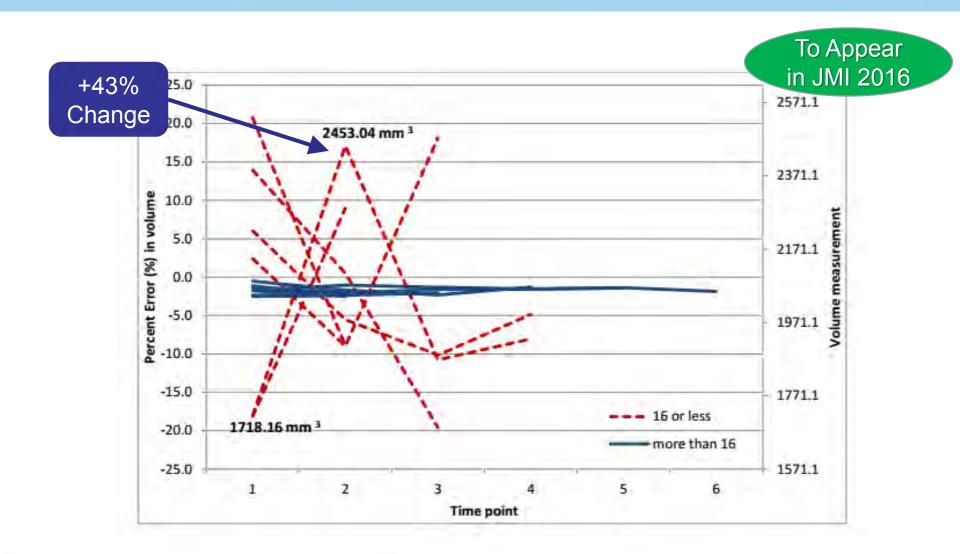
### 2010: Roche ABIGAIL Study



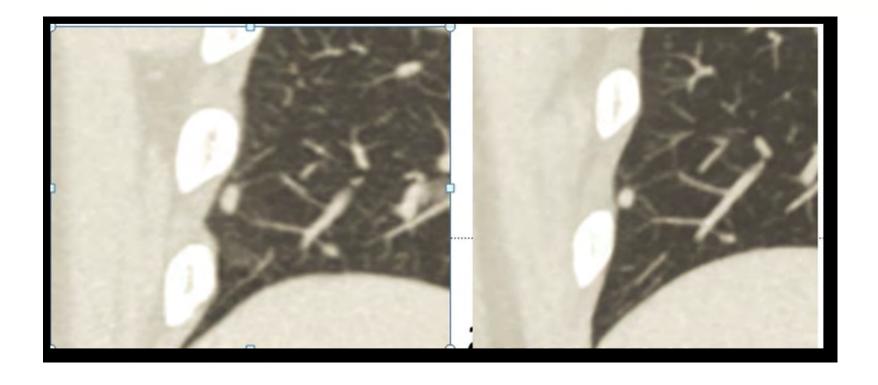

Model A Site 1






Model A Site 2




1601 mm<sup>3</sup>

2127 mm<sup>3</sup>

### **Volume Measurements Over Time**



## **Periodic Z Warping**



## 2016 CT Lung Cancer Screening Protocol Challenge

### Goal

- To quantitatively determine the most effective lung cancer screening CT scanners and protocols using an ultra-low cost, crowd-sourced approach.
- In addition, to identify the best protocols for combined lung cancer and COPD screening.



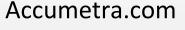
## **Team**

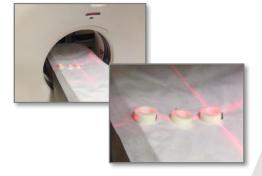
- Accumetra
  - Challenge Leadership
  - Image Assessment Technology
- Prevent Cancer Foundation
  - National Cancer Patient Advocacy
  - Lung Cancer Workshop XIII
- Lung Cancer Alliance
  - National Cancer Patient Advocacy
  - > 300 Framework Sites
- I-ELCAP
  - Largest Ongoing International Lung Cancer Screening Study
- COPD Foundation
  - National COPD Patient Advocacy





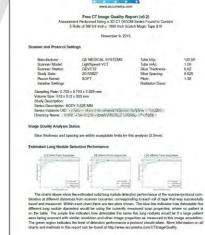




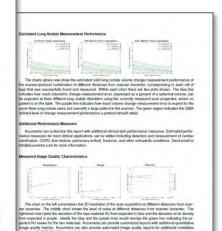




## Free CT Image Quality Report

Can Be Replaced With Calibrated Object








### Email



Accumetra



This prototype quality assessment report and the results obtained are for research and scientific purposes by at this time. The information should not be used for patient care.

2

Tech Can Do
The Scan In
< 5 Minutes

**Optimize** 

## CT Scanning Site Participants

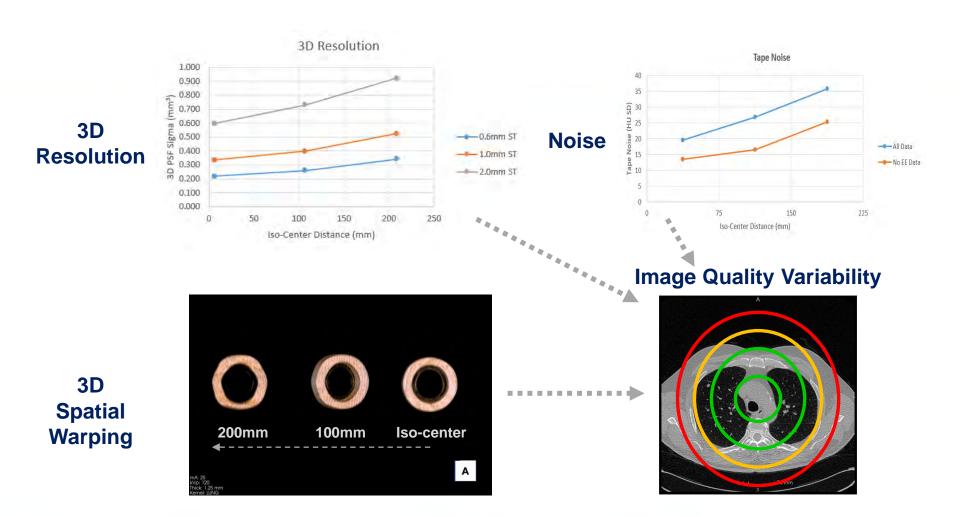


## CT Scanners (26 sites)

| GE (19% = 10/53)      | BrightSpeed8             | 8           | 1              |
|-----------------------|--------------------------|-------------|----------------|
|                       | LightSpeed VCT           | 64          | 5              |
|                       | Discovery CT750 HD       | 128         | 2              |
|                       | Revolution CT            | 256         | 2              |
|                       |                          |             |                |
| Siemens (50% = 27/53) | Sensation 16             | 16          | 2              |
|                       | Biograph40               | 40          | 1              |
|                       | Sensation64              | 64          | 4              |
|                       | SOMATOM Definition       | 64          | 4              |
|                       | SOMATOM Definition AS    | 40, 64, 128 | 6              |
|                       | SOMATOM Definition AS+   | 128         | 4              |
|                       | Definition AS+ 128       | 128         | 1              |
|                       | Definition Edge 128      | 128         | 1              |
|                       | SOMATOM Definition Flash | 256         | 4              |
|                       |                          |             |                |
| Philips (23% = 12/53) | Brilliance64             | 64          | 4              |
|                       | IngenuityCT              | 128         | 5              |
|                       | iCT 256                  | 256         | 3              |
|                       |                          |             |                |
| Toshiba (8% = 4/53)   | Aquilion                 | 64          | 1              |
|                       | Aquilon ONE              | 320         | 3              |
| 4 Manufacturers       | 18 Models                |             | 53 CT Scanners |

## CT Lung Screening Protocol Guidelines

#### **CT Acquisition**


|                                                                | Detectors<br>>= | Thickness <=      | Spacing<br><=     | Kernel             |
|----------------------------------------------------------------|-----------------|-------------------|-------------------|--------------------|
| 2016 RSNA/QIBA Small Nodule Profile (19% to 42%)               | 16              | 1.25              | 1.25              | Highest<br>Res.    |
| 2016 I-ELCAP Guidelines                                        | 64              | 1.25              | 1.25              | Highest<br>Res.    |
| 2015 European Society of Radiology                             | 16              | 1.0               | 0.7               | No<br>Pref.        |
| 2015 American College of Radiology<br>(10 Pillars Publication) | 16              | 2.5,<br>1.0 pref. | No<br>Pref.       | No<br>Pref.        |
| 2016 AAPM Lung Cancer Screening Protocols                      | 16              | 2.5,<br>1.0 pref. | 2.5,<br>1.0 pref. | Range,<br>Not Easy |

Our Specification: >= 16 detector rows, <=1.25 thickness, <=1.25 spacing

### Detection Slice Thickness & Recon Kernel

| Slice<br>Thickness                  | Sites    | Soft<br>Recon | Medium<br>Recon | Edge En.<br>Recon |
|-------------------------------------|----------|---------------|-----------------|-------------------|
| <= 0.625                            | 4 (15%)  | 0             | 3               | 1                 |
| 0.8, 1.0, 1.25                      | 12 (46%) | 6             | 2               | 4                 |
| >= 1.5  3 used 2mm ST & 1mm specing | 10 (38%) | 6             | 3               | 1                 |

## **CT Image Quality Issues**



## **Mammography Quality Standards Act**



## RSNA/QIBA CT Small Lung Nodule Profile



QIBA Profile: Lung Nodule Assessment in CT Screening Profile - 2017



2

3

4

QIBA Profile:

Lung Nodule Volume Assessment and Monitoring in
 Low Dose CT Screening

7

8 Stage: Publicly Reviewed (draft)

### A QIBA Small Lung Nodule Phantom

200 mm from Iso-Center

At Iso-Center

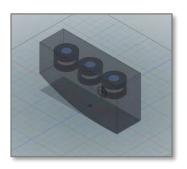
Teflon (~950 HU) Cylinder

Delrin (~340 HU) Concentric Cyl

Acrylic (~120 HU) Cylinder

Air (-1000 HU)

Room For Other Compartments


# ~ 100 CTLX1 Phantoms Are Being Globally Distributed

#### Confirms Fundamental CT Image Properties

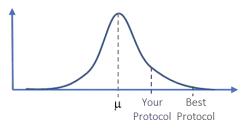
- 3D Resolution:
  - 3D PSF Ellipsoid Volume <= 1.5 mm<sup>3</sup>
- 3D Resolution Aspect:
  - PSF Z/X <= 2.0
- Linearity Bias:
  - Air and Acrylic Bias < 35 HU</li>
- Image Noise:
  - Acrylic Noise <= 50 HU SD</li>
- Kernel Edge Enhancement:
  - Air to Delrin Enhancement <= 5%</li>
- 3D Spatial Warping:
  - Delrin Cylinder RMSE <= 0.3 mm
- Lung Nodule Volume Change Performance
  - Verifies That Image Quality Meets or Exceeds
     The QIBA CT Lung Nodule Profile Volume
     Change Measurement Claims



# RSNA/QIBA Conformance Certification Pilot Project Using Cloud-Based Computing Services








http://quality.rsna.org

Email



Check Each
Time Scanner
or Protocol
Changes and
Once Per Year



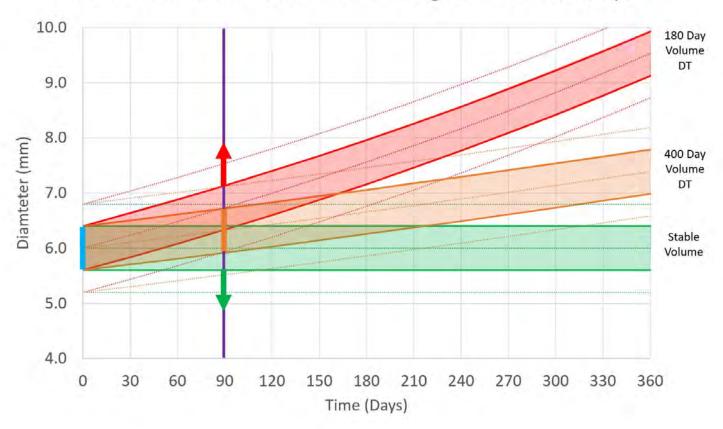
#### **Guidance**

Webpages & FAQs

### **International CT Image Quality Monitoring**

#### 54 Phantoms Distributed As Of 4/2/2018




#### **Data Received & Analyzed From:**

- 25 Sites
- ~40 Unique CT Scanners
- > 200 CT Scans
- 4 Manufacturers
- Siemens, GE, Philips, Toshiba
- > 20 Different Scanner Models

### New Tool: Nodule Diameter/Volume Growth

#### **Nodule Diameter Growth**

What can we say if we use great CT imaging of a ~6mm nodule at baseline and again after 90 days?



## Summary

- As We Ramp Up Low Dose CT Lung Cancer Screening Throughout The World, We Need To Ensure That Screening Services Are Delivered With High Quality
- For the First Time, and With Prevent Cancer Foundation Support, We Are Now Helping International Sites To Monitor and Rapidly Optimize Imaging Protocols For Lung Cancer Screening Using Crowd-Sourcing and Cloud Computing
- We Are Now Working to Establish Minimum Standards and an International Infrastructure For Lung Screening Image Quality
- These New Tools Are Also Enabling New Tools That Will Provide For More Personalized Management and Follow-Up of Lung Nodules

## Thank You