QUANTITATIVE IMAGING A SYSTEMS TOOL

Lung cancer, COPD, cardiac & vascular disease

Raúl San José Estépar, Ph.D.

Brigham and Women's Hospital Harvard Medical School

Adult aged 55 to 80 years who have a 30 packyear smoking history and currently smoke or have quit within the past 15 years.

Fabbri., et al. ERJ 2008; 100:115

Search USPSTF Topics

Home

Recommendations

Published Final Recommendations

Recommendations in Progress

Information for Health Professionals

Information for Consumers

Public Comments and Nominations

Methods and Processes

About the USPSTF

You are here: Home » Recommendations for Primary Care Practice » Published Recommendation

Lung Cancer: Screening

Release Date: December 2013

Recommendation Summary

Summary of Recommendation and Evidence

Population	Recommendation	Grade (What's This?)
Adults Aged 55-80, with a History of Smoking	The USPSTF recommends annual screening for lung cancer with low-dose computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery.	B

A System-based Analysis has Real Implications

COPD

Lung Cancer

COPD and Lung Cancer: Common Molecular-Genetic Pathways

A Holistic Tool to Smoking Related Disease

Atlas of COPD, Springer Science. 2008

Α

© Current Medicine

COPD Evaluation is Possible in Low Dose CT

Diagnosis of chronic obstructive pulmonary disease in lung cancer screening Computed Tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening

Onno M Mets¹, Michael Schmidt^{2,3}, Constantinus F Buckens⁴, Martijn J Gondrie¹, Ivana Isgum⁵, Matthijs Oudkerk⁶, Rozemarijn Vliegenthart⁶, Harry J de Koning⁷, Carlijn M van der Aalst⁷, Mathias Prokop⁸, Jan-Willem J Lammers⁹, Pieter Zanen⁹, Firdaus A Mohamed Hoesein¹, Willem PThM Mali¹, Bram van Ginneken^{3,5}, Eva M van Rikxoort^{3†} and Pim A de Jong^{1+†}

	Model	C-index (95% CI)		
		Asymptomatics	Symptomatics	
1	Baseline model *	0.674 (0.625 -0.722)	0.634 (0.589 - 0.679)	
2	+ CT-BWT	0.739 (0.695 - 0.783)	0.764 (0.725 - 0.803)	
3	+ CT air trapping	0.737 (0.693 - 0.780)	0.794 (0.759 - 0.829)	
4	+ CT emphysema	0.753 (0.707 – 0.800)	0.806 (0.771 - 0.841)	
5	+ CT-BWT	0.771 (0.730 – 0.813)	0.821 (0.788 – 0.855)	
	+ CT air trapping			
6	+ CT emphysema	0.782 (0.740 - 0.824)	0.872 (0.844 - 0.899)	
	+ CT air trapping			
7	+ CT emphysema	0.828 (0.790 – 0.866)	0.886 (0.859 - 0.912)	
	+ CT-BWT			
8	+ CT emphysema	0.832 (0.795 – 0.869)	0.905 (0.881 - 0.929)	
	+ CT-BWT			
	+ CT air trapping			

Coronary Calcium Scoring in LCS

- Calcification increases the risk of death among smokers screened for lung cancer
 - > Agatston scores 400 and higher increased the risk of death by a factor of 12 [Takx,2015].

- Visual assessment of lung cancer screening scans, even without Agatston scoring, was sufficient to assess cardiac risk.
 - > Hazard ratios for visual assessment of mild, moderate were 2.09 to 3.8 [Chiles,2015]

R. A. P. Takx, et al, *J Cardiovasc Comput Tomogr*, vol. 9, no. 1, pp. 50–57, Jan. 2015 C. Chiles, et al, Radiology, vol. 276, no. 1, pp. 82–90, Jul. 2015.

Assessing Cardiac Dysfunction in Low Dose CTs

G. Vegas et al, ATS 2016

Correlation with cMRI Measures of Ventricular Geometry

CT Derived
MetricsCardiac MRI Derived
Metrics

n=24

Minhas et al, ATS 2016

Correlation with Echo Measures of Ventricular Geometry

Minhas et al, ATS 2016

Associations with Ventricular Dysfunction

GOLD 3, RV/LV=0.8, RVSP=47

GOLD 0, RV/LV=0.5, no dys.

Predicting RV Failure

Predicting Elevated RVSP (> 40 mmHg)

Next Frontier: Pulmonary Vasculature

4.52 mm

3.35 mm

1.33 mm

- Consistent evidences show that pulmonary vascular change markers are early biomarkers of disease progression
- Assessment of small vessels enable Pulmonary Hypertension evaluation.

Dougherty, ATS, 2015 K. S. Iyer, *Am. J. Respir. Crit. Care Med.*, 2015.

的一個原語:首称的習慣不同的

28 m - 2 M - 2 P -

ja 💑 14- "A. "J. 14" 🏖 🔞 🔅 🕂

*** -06 👎 🐝 it' 🖏

540 - 1 1 10 M 4 540 540 11 52

Automated Diagnosis: Deep Learning

Deep learning is one of the most disruptive technology radiology has seen since the advent of digital imaging

What is the magic behind?

Pec Muscles

Pulmonary Artery and Aorta

Visceral Fat

A "Brave New World"?

Sex

G+ G-Pos 468 023 Neg 035 474 P(P|T) 0.930 0.046 Odds ratio: 275.568
 Severe_Exacerbations

 G+
 G

 Pos
 046
 078

 Neg
 151
 725

 P(P|T)
 0.234
 0.097

 Odds ratio: 2.832
 2.832

ReportedERG+G-Pos061 103Neg270 566P(P|T)0.1840.154Odds ratio:1.241

Race

G+ G-Pos 049 018 Neg 061 872 P(P|T) 0.445 0.020 Odds ratio: 38.914

BronchAttack G+ G-Pos 389 164 Neg 227 220 P(P|T) 0.631 0.427 Odds ratio: 2.299 ReportedHospitalG+G-Pos039094Neg221646P(P|T)0.1500.127Odds ratio: 1.213

Conclusions

- Integrated analysis of chest CT scans are key to perform early disease detection.
- Registries can empower data scientist to deliver an integrated understanding of disease under an integrated screening framework.
- Variability has to be harnessed but it should not stop us.